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Abstract

This paper presents a divide-and-conquer ray-traced vol-
ume rendering algorithm and a parallel image compositing
method, along with their implementation and performance
on the Connection Machine CM-5, and networked worksta-
tions. This algorithm distributes both the data and the
computations to individual processing units to achieve fast,
high-quality rendering of high-resolution data. The volume
data, once distributed, is left in place, regardless of viewing
position. The processing nodes perform local raytracing of
their subvolume concurrently. No communication between
processing units is needed during this local ray-tracing pro-
cess. A subimage is generated by each processing unit and
the final image is obtained by compositing subimages in the
proper order, which can be determined a priori. Composi-
tion is done in parallel via a new algorithm we call Binary-
Swap compositing. Test results on both the CM-5 and a
group of networked workstations demonstrate the practical-
ity of our rendering algorithm and compositing method.

1 Introduction

Existing volume rendering methods, though capable of mak-
ing very effective visualizations, are very computationally
intensive and therefore fail to achieve interactive render-
ing rates for large data sets. Although computing technol-
ogy continues to advance, computer processing power never
seems to catch up with the increases in data size. Our work
was motivated by the following observations. First, volume
data sets can be quite large, often too large for a single pro-
cessor machine to hold in memory at once. Moreover, high
quality volume renderings normally take minutes to hours
on a single processor machine and the rendering time usu-
ally grows linearly with the data size. To achieve interactive
rendering rates, users often must reduce the original data,
which produces inferior visualization results. Second, many
acceleration techniques and data exploration techniques for
volume rendering trade memory for time, which results in
another order of magnitude increase in memory use. Third,
motion is one the most effective visualization cues, but an
animation sequence of volume visualization normally takes
hours to days to generate. Finally, we notice the availability
of massively parallel computers and the hundreds of high
performance workstations in our computing environments.
These workstations are frequently sitting idle for many hours
a day. All the above lead us to investigate ways of dis-
tributing the increasing amount of data as well as the time-
consuming rendering process to the tremendous distributed
computing resources available to us.

In this paper we describe the resulting parallel volume
rendering algorithm, which consists of two parts: parallel
ray-tracing and parallel compositing. In our current imple-
mentation on the CM-5 and networked workstations, the
parallel volume renderer evenly distributes data to the com-
puting resources available. Without the need to commu-
nicate with other processing units, each subvolume is ray-
traced locally and generates a partial image. The parallel
compositing process then merges all resulting partial im-
ages in depth order to produce the complete image. Our
compositing algorithm is particularly effective for massively
parallel processing as it always makes use of all processing
units by repeatedly subdividing the partial images and dis-
tributing them to the appropriate processing units. Our test
results on both the CM-5 and workstations are promising,
and expose different performance issues for each platform.

2 Background

An increasing number of parallel algorithms for volume ren-
dering have been developed recently [1, 2, 3, 4]. The ma-
jor algorithmic strategy for parallelizing volume rendering
is the divide-and-conquer paradigm. The volume rendering
problem can be subdivided either in data space or in im-
age space. Data-space subdivision assigns the computation
associated with particular subvolumes to processors, while
image-space subdivision distributes the computation asso-
ciated with particular portions of the image space. Data-
space subdivision is usually applied to a distributed-memory
parallel computing environment while image-space subdi-
vision is often used in shared-memory multiprocessing en-
vironments. Our method, as well as the similar methods
developed independently by Hsu, Camahort and Neumann
[1, 2, 3], can be considered hybrid methods because they sub-
divide both data space (during rendering) and image space
(during compositing).

The basic idea behind our algorithm and the other simi-
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lar methods is very simple: divide the data up into smaller
subvolumes and distrbute the subvolumes to multiple pro-
cessors, render them separately and locally, and combine the
resulting images in an incremental fashion. The memory
demands on each processor are modest since each processor
need only hold a subset of the total data set. In earlier work
we used this approach to render high resolution data sets in
a computing environment, for example, with many midrange
workstations (e.g. equipped with 16MB memory) on a local
area network [5]. Many computing environments have an
abundance of such workstations which could be harnessed
for volume rendering provided that the memory usage on
each machine is reasonable.

3 A Divide and Conquer Algorithm

The starting point of our algorithm is the volume ray-tracing
technique presented by Levoy [6]. An image is constructed
in image order by casting rays from the eye through the im-
age plane and into the volume of data. One ray per pixel is
generally sufficient, provided that the image sample density
is higher than the volume data sample density. Using a dis-
crete rendering model, the data volume is sampled at evenly
spaced points along the ray, usually at a rate of one to two
samples per voxel. The volume data is interpolated to these
sample points, usually using a trilinear interpolant. Color
and opacity are determined by applying a transfer function
to the interpolated data values. This can be accomplished
through a table lookup. Intensity is assigned by applying
a shading function such as the Phong lighting model. The
normalized gradient of the data volume can be used as the
surface normal for shading calculations.

Sampling continues until the data volume is exhausted
or until the accumulated opacity reaches a threshold cut-off
value. The final image value corresponding to each ray is
formed by compositing, front-to-back, the colors and opac-
ities of the sample points along the ray. The color/opacity
compositing is based on Porter and Duff’s over operator [7].
It is easy to verify that the over is associative; that is,

a over (b over c) = (a over b) over c.

The associativity of the over operator allows us to break a
ray up into segments, process the sampling and compositing
of each segment independently, and combine the results from
each segment via a final compositing step. This is the basis
for our parallel volume rendering algorithm as well as recent
methods by other authors [1, 2, 3, 5].

3.1 Data Subdivision/Load Balancing

The divide-and-conquer algorithm requires that we partition
the input data into subvolumes. There are many ways to
partition the data; Neumann compares block, slab and shaft
data disribution [3]. Ideally we would like each subvolume to
require about the same amount of computation. We would
also like to minimize the amount of data which must be
communicated between processors during compositing.

The simplest method is probably to partition the volume
along planes parallel to the coordinate planes of the data. If
the viewpoint is fixed and known when partitioning the data,
the coordinate plane most nearly orthogonal to the view di-
rection can be determined and the data can be subdivided
into “slices” orthogonal to this plane. When orthographic
projection is used, this will tend to produce subimages with
little overlap, and therefore little communications during
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Figure 1: k-Dtree Subdivision of a Data Volume

compositing. If the view point is not known a priori, or
if perspective projection is used, it is better to partition the
volume equally along all coordinate planes. This is know
as block data distribution [3] and can be accomplished by
gridding the data equally along each dimension [1, 2].

We instead use a k-D tree structure for data subdivision
[8], with alternating binary subdivision of the coordinate
planes at each level in the tree as indicated in Figure 1.
When the number of processors is a power of 8, the volume
is divided equally among all three dimensions, and hence
this is equivalent to the griding method. If the number
of processors is not a power of 8, the volume will be split
unevenly in the three dimensions, however, never by more
than a factor of two. As shown later, the k-D tree structure
provides a convenient hierarchical structure for image com-
positing. Note that when trilinear interpolation is used, the
data lying on the boundary between two subvolumes must
be replicated and stored with both subvolumes.

3.2 Parallel Rendering

Local rendering is performed on each processor indepen-
dently; that is, data communications is not required during
subvolume rendering. We use ray-casting based volume ren-
dering. All subvolumes are rendered using an identical view
position and only rays within the image region covering the
corresponding subvolume are cast and sampled.

In principle, any volume rendering algorithm could be
used for local rendering, however, some care needs to be
taken to avoid visible artifacts where subvolumes meet. For
example, in ray casting, we sample along each ray at a fixed
predetermined interval. Consistent sampling locations must
be ensured for all subvolumes so we can reconstruct the orig-
inal volume. Asshown in Figure 2, for example, the location
of the first sample S2(1) on the ray shown in Subvolume 2
should be calculated correctly so that the distance between
S2(1) and S;(n) is equivalent to the predetermined inter-
val. Without careful attention to the sample spacing, even
across subvolume boundaries, the subvolume boundaries can
become visible as an artifact in the final image.
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Figure 2: Correct Ray Sampling

3.3 Image Composition

The final step of our algorithm is to merge ray segments
and thus all partial images into the final total image. In
order to merge, we need to store not only the color at each
pixel but also the accumulated opacity. As described earlier,
the rule for merging subimages is based on the over com-
positing operator. When all subimages are ready, they are
composited in a front-to-back order. For a straightforward
one-dimensional data partition, this order is also straightfor-
ward. When using the k-D tree structure, this front-to-back
image compositing order can be determined hierarchically
by a recursive traversal of the k-D tree structure, visiting
the “front” child before the “back” child. This is similar
to well known front-to-back traversals of BSP-trees [9]. In
addition, the hierarchical structure provides a natural way
to accomplish the compositing in parallel: sibling nodes in
the tree may be processed concurrently.

A naive approach for parallel merging of the partial im-
ages is to do binary compositing. By pairing up processors
in order of compositing, each disjoint pair produces a new
subimage. Thus after the first stage, we are left with the
task of compositing only n/2 subimages. Then we use half
the number of the original processors, and pair them up
for the next level of compositing. Continuing similarly, af-
ter log n stages, the final image is obtained. Omne problem
with the above method is that during the compositing pro-
cess many processors become idle. At the top of the tree,
only one processor is active, doing the final composite for
the entire image. We found that compositing two 512x512
images required 1.44 seconds on one CM-5 scalar processor.
One of our goals was interactive volume rendering, requiring
subsecond rendering times, so this was unacceptable.

More parallelism must be exploited during the composit-
ing phase. Towards this end, we have generalized the binary
compositing method so that every processor participates in
all the stages of the compositing process. We call the new
scheme binary-swap compositing. The key idea is that, at
each compositing stage, the two processors involved in a
composite operation split the image plane into two pieces
and each processor takes responsibility for one of the two
pieces.

In the early phases of the binary-swap algorithm, each
processor is responsible for a large portion of the image area,
but the image area is usually sparse since it includes con-
tributions only from a few processors. In later phases of
the algorithm, as we move up the compositing tree, the pro-
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Figure 3: Parallel Compositing Process

cessors are responsible for a smaller and smaller portion of
the image area, but the sparsity decreases since an increas-
ing number of processors have contributed image data. At
the top of the tree, all processors have complete information
for a small rectangle of the image. The final image can be
constructed by tiling these subimages onto the display.

The sparsity of the image can be exploited, since com-
positing need only occur where non-blank image data is
present. Each processor maintains a screen aligned bound-
ing rectangle of the non-blank subimage area. The proces-
sors only store and composite within this bounding rectan-
gle. Two forces affect the size of the bounding rectangle
as we move up the compositing tree: the bounding rectan-
gle grows due to the contributions from other processors,
but shrinks due to the subdivision of the image plane as we
move up the tree. The net effect is analyzed in greater detail
in the next section.

Figure 3 illustrates the binary-swap compositing algo-
rithm graphically for four processors. When all four proces-
sors finish rendering locally, each processor holds a partial
image, as depicted in (a). Each partial image is subdivided
into two half-images by splitting along the X axis. In our
example, as shown in (b), Processor 1 keeps only the left
half-image and sends its right half-image to its immediate-
right sibling, which is Processor 2. Conversely, Processor 2
keeps its right half-image, and sends its left half-image to
Processor 1. Both processors then composite the half image
they keep with the half image they receive. A similar ex-
change and compositing of partial images is done between
Processor 3 and 4.

After the first stage, each processor only holds a partial
image that is half the size of the original one. In the next
stage, Processor 1 alternates the image subdivision direc-
tion. This time it keeps the upper half-image and sends
the lower half-image to its second-immediate-right sibling,
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which is Processor 3, as shown in (c). Conversely, Processor
3 trades its upper half-image for Processor 1’s lower half-
image for compositing. Concurrently, a similar exchange
and compositing between Processor 2 and 4 are done. After
this stage, each processor hold only one-fourth of the origi-
nal image. For this example, we are done and each processor
sends its image to the display device. The final composited
image is shown in (d). It has been brought to our atten-
tion that a similar merging algorithm has been developed
independently by Mackerras [10].

In our current implementation, the number of processors
must be a perfect power of two. This simplifies the calcu-
lations needed to identify the compositing partner at each
stage of the compositing tree and ensures that all processors
are active at every compositing phase. The algorithm can be
generalized to relax this restriction if the compositing tree
is kept as a complete (but not necessarily full) binary tree,
with some additional complexity in the compositing part-
ner computation and with some processors remaining idle
during the first compositing phase.

3.4 Communications Costs

At the end of local rendering each processor holds a subim-
age of size approximately p n"2/? pixels, where p is the
number of pixels in the final image and n is the number
of processors [3]. The total number of pixels, over all n pro-
cessors is therefore: p nt/? pixels. In the first phase of the
binary-swap algorithm, half of the these pixels are communi-
cated. At this point, each processor performs a single binary
compositing step with the data from the neighboring proces-
sors, operating only on the nonempty pixels in the portion
of the image plane assigned to it. Some reduction in the
total number of pixels will occur due to the depth overlap
that is resolved in this compositing stage.

On average, the reduction due to depth overlap is by a
factor of 271/ at each compositing phase. To see this, con-
sider what happens over three compositing phases. The k-D
tree partitioning of the data set will split each of the coor-
dinate planes in half over 3 levels in the tree. Orthogonal
projection onto any plane will have an average depth overlap
of 2. For example, assume the viewpoint is selected so that
we are looking straight down the 7 axis. The X and Y splits
of the data will result in no depth overlap in the image plane
while the 7 split will result in complete overlap, cutting the
total number of pixels in half. Thus, over three compositing
phases, the image size is reduced by a factor of 1/2. The
average over each phase then is: 2_1/37 so that when three
stages are invoked (cubing the per-stage factor) we get the
required factor of 1/2.

This process repeats through logn phases. If we num-
ber the phases from =1 to logn, each phase begins with
g—(=1)/2 pi/3 p pixels and ends with 23t /3 p pixels.
The last phase therefore ends with 2-(es™/3 p1/3 o, —
n=t/? ptld p = p pixels, as expected. At each phase, half
of the pixels are communicated. Summing up the pixels
communicated over all phases:

log n

. . _ L =13 173
pixels transmitted = Z (5 2 n p)
=1
The 2=¢~D/% term accounts for depth overlap resolution.

The n'/? p term accounts for the initial local rendered image
size, summed over all processors. The factor of 1/2 accounts

for the fact that only half of the active pixels are communi-
cated in each phase. This sum can be bounded by pulling
out the terms which don’t depend on 1 and noticing that the
remaining sum is a geometric series which converges:

log n

. . 1 -
pixels transmitted = Z (5 g~ (=1/3 178 P)
i=1
1 log n—1
_ L 1/3 —i/3
= 3 n p Z 2
=0

< 2430 p

3.5 Comparisons with Other Algorithms

Other alternatives for parallel compositing have been devel-
oped simultaneously and independently of our work. One,
which we will call direct send, subdivides the image plane
and assigns each processor a subset of the total image pix-
els. This is the approach used by Hsu and Neumann [1, 3].
Each rendered pixel is sent directly to the processor as-
signed that portion of the image plane. Processors accu-
mulate these subimage pixels in an array and composite
them in the proper order after all rendering is completed.
The total number of pixels transmitted with this method is
n'? p (1 — 1/n), as reported by Neumann [3]. Asymptot-
ically this is comparable to our result, but with a smaller
constant factor.

In spite of the somewhat higher count of pixels transmit-
ted, there are some advantages of our method over direct
send. Direct send requires that each rendering processor
send its rendering results to, potentially, every other proces-
sor. Indeed, Neumann recommends interleaving the image
regions assigned to different processors to ensure good load
balance and network utilization. Thus, direct send com-
positing may require a total of n(n—1) messages to be trans-
mitted. In binary-swap compositing, each processor sends
exactly log n messages, albeit larger ones, so the total num-
ber of messages transmitted is nlogn. When per-message
overhead is high, it can be advantageous to reduce the total
message count. Furthermore, binary-swap compositing can
exploit faster nearest neighbor communications paths when
they exist. Early phases of the algorithm exchange messages
with nearest neighbors, and this is exactly when the number
of pixels transmitted is largest, since little depth resolution
has occured. On the other hand, binary-swap compositing
requires log n communications phases, while the direct send
method sends each partial ray segment result only once.
In an asynchronous message passing environment, direct-
send latency costs are O(1), while in a synchronous envi-
ronment they are O(n), since the processor must block until
each message is received and acknowledged. Binary-swap la-
tency costs grow by O(log n), whether synchronous or asyn-
chronous communications are used.

Camahort and Chakravarty have developed a different
parallel compositing algorithm [2] which we will call the pro-
jection method. Their rendering method uses a 3D grid de-
composition of the volume data. Parallel compositing is ac-
complished by propagating ray segment results front-to-back
along the path of the ray through the volume to the pro-
cessors holding the neighboring parts of the volume. Each
processor composites the incoming data with its own local
subimage data before passing the results onto its neighbors
in the grid. The final image is projected on to a subset of
the processor nodes; those assigned outer back faces in the
3D grid decomposition.
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Like the other methods, the projection method requires
a total of O(nl/3 p) pixels to be transmitted. Camahort
and Chakravarty observe that each processor sends its re-
sults to, at most, three neighboring processors in the 3D
grid. Thus, by buffering pixels, the projection method can
be implemented with only 3 message sends per processor as
compared to log n for binary swap and n — 1 for direct send.
However, each final image pixel must be routed through n'/?
processor nodes, on average, on its way to a face of the vol-
ume. This means that the messages latency costs grow by

O(nl/s).

4 Implementation of the Renderer

We have implemented two versions of our distributed vol-
ume rendering algorithm: one on the CM-5 and another on
groups of networked workstations. Our implementation is
composed of three major pieces of code: a data distributor,
a renderer, and an image compositor. Currently, the data
distributor is a part of the host program which reads data
piece by piece from disk and distributes it to each participat-
ing machine. Alternatively, each node program could read
its piece from disk directly if parallel 1/O facilities exist.

Our renderer is a basic renderer and is not highly tuned
for best performance. Data dependent volume rendering ac-
celeration techniques tend to be less effective in parallel vol-
ume renderers, compared to uniprocessor implementations,
since they may accelerate the progress on some processors
more than others. For example, a processor tracing through
empty space will probably finish before another processor
working on a dense section of the data. We are currently
exploring data distribution heuristics that can take the com-
plexity of the subvolumes into account when distributing the
data to ensure equal load on all processors.

For shading the volume, surface normals are approxi-
mated as local gradients using central differencing. We
trade memory for time by precomputing and storing the
three components of the gradient at each voxel. For exam-
ple, a data set of size 256x 256 x256 requires more than 200
megabytes to store both the data and the precomputed gra-
dients. This memory requirement prevents us from sequen-
tially rendering this data set on most of our workstations.

4.1 CM-5 and CMMD 3.0

The CM-5 is a massively parallel supercomputer which sup-
ports both the SIMD and MIMD programming models [11].
The CM-5 in the Advanced Computing Laboratory at Los
Alamos National Laboratory has 1024 nodes, each of which
is a Sparc microprocessor with 32 MB of local RAM and
four 64-bit wide vector units. With four vector units up
to 128 operations can be performed by a single instruc-
tion. This yields a theoretical speed of 128 GFlops for a
1024-node CM-5. The nodes can be divided into partitions
whose size must be a power of two. Each user program oper-
ates within a single partition. Our CM-5 implementation of
the parallel volume renderer takes advantages of the MIMD
programming features of the CM-5. MIMD programs use
CMMD, a message passing library for communications and
synchronization, which supports either a hostless model or
a host/node model.

We chose the host/node programming model of CMMD
because we wanted the option of using X-windows to dis-
play directly from the CM-5. The host program determines
which data-space partitioning to use, based on the number
of nodes in the CM-5 partition, and sends this information

to the nodes. The host then optionally reads in the volume
to be rendered and broadcasts it to the nodes. Alterna-
tively, the data can be read directly from the DataVault or
Scalable Disk Array into the nodes’ local memory. The host
then broadcasts the opacity/colormap and the transforma-
tion information to the nodes. Finally, the host performs an
I/O servicing loop which receives the rendered portions of
the image from the nodes.

The node program begins by receiving its data-space par-
titioning information and then its portion of the data from
the host. It then updates the transfer function and the trans-
form matrices. Following this step, the nodes all execute
their own copies of the renderer. They synchronize after the
rendering and before entering the compositing phase. Once
the compositing is finished, each node has a portion of the
image that it then send back to the host for display.

4.2 Networked Workstations and PVM 3.1

Unlike a massively parallel supercomputer dedicating uni-
form and intensive computing power, a network computing
environment provides nondedicated and scattered comput-
ing cycles. Thus, using a set of high performance work-
stations connected by an Ethernet, our goal is to set up a
volume rendering facility for handling large data sets and
batch animation jobs. That is, we hope that by using many
workstations concurrently, the rendering time will decrease
linearly and we will be able to render data sets that are too
large to render on a single machine. Note that real-time ren-
dering 1s generally not achievable in such an environment.

We use PVM (Parallel Virtual Machine) [12], a parallel
program development environment, to implement the data
communications in our algorithm. PVM allows us to imple-
ment our algorithm portably for use on a variety of worksta-
tion platforms. To run a program under PVM, the user first
executes a daemon process on the local host machine, which
in turn initiates daemon processes on all other remote ma-
chines used. Then the user’s application program (the node
program), which should reside on each machine used, can be
invoked on each remote machine by a local host program via
the daemon processes. Communication and synchronization
between these user processes are controlled by the daemon
processes, which guarantee reliable delivery.

A host/node model has also been used. As a result, the
implementation is nearly identical to that on the CM-5. In
fact, the only distinct difference between the workstation’s
and CM-5’s implementation (source program) is the com-
munication calls. Basically, for most of the basic communi-
cation functions, PVM 3.1 and CMMD 3.0 have one-to-one
equivalence.

5 Tests

We used three different data sets for our tests. The vorticity
data set is a 256 x 256 x 256 voxel CFD data set, computed on
a CM-200, showing the onset of turbulence. The head data
set 1s the now classic UNC Chapel Hill MR head at a size of
128 x128x128. The vessel data set 1s a 256 x256x 128 voxel
Magnetic Resonance Angiography (MRA) data set showing
the vascular structure within the brain of a patient.

Figure 4 illustrates the compositing process described in
Figure 3, using the images generated with the head data set
using eight processors. In Figure 4, each row shows the im-
ages from one processor, while from left to right, the columns
show the intermediate images before each composite phase.
The right most column shows the final results, still divided
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Figure 4: Head Data Set and Parallel Compositing Process

Figure 5: Vessel Data Set

Figure 6: Vorticity Data Set
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Figure 7: CM5 Speedup for 512 x 512 image size

function 32 64 128 256 512

dist 89.87 93.516 | 83.185 | 94.326 | 49.157
rend 48.2005 | 24.4303 | 12.697 | 6.3434 | 3.1878
comp 0.6309 0.5579 | 0.4091 | 0.3736 | 0.3213
comm 0.0843 0.0231 | 0.0181 | 0.0138 | 0.0097

send 0.9918 0.965 0.9645 | 1.0151 | 0.9849

Table 1: CM-5 Time (in seconds) Breakdown, Vorticity Data
Set, 512 x 512 image size

among the eight processors. The final tiled image is blown
up and displayed on the right. Figures 5 and 6 show im-
ages of the other two data sets rendered in parallel using the
algorithm described here.

51 CM-5

We performed multiple experiments on the CM-5 using par-
tition sizes of 32, 64, 128, 256 and 512. When these tests
were run, a 1024 partition was not available. Figure 7 shows
the speedup results for a 512x512 image on each data set.
Note that the speedup is relative to the 32 node running
time.

As there is no communication in the rendering step, one
might expect linear speedup when utilizing more processors.
As can be seen from the three speedup graphs, this is not
always the case due to the load balance problems. The vor-
ticity data set is relatively dense (i.e. it contains few empty
voxels) and therefore exhibits nearly linear speedup. On the
other hand, both the head and the vessel data sets contain
many empty voxels which unbalance the load and therefore
do not exhibit the best speedup.

Timing results are shown in Figure 8 (all data sets using
an image size of 512x512) and Figure 9 (vessel data set at
several image sizes). All times are given in seconds. The
times shown in the graphs are the maximum times for all the
nodes for the two steps of the core algorithm: the rendering
step and the compositing step. Data distribution and image
gather times are not included in the graphs.

Table 1 shows a time breakdown by algorithm component:
data distribution (dist), rendering (rend), compositing com-
putation time (comp), compositing communications (comm)
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Figure 8 CM5 Run Times by Data Set, 512 x 512 image
size
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Figure 9: CM5 Run Times by Image Size, Vessel Data

and image gather (send) on a 512 x 512 rendering of the vor-
ticity data. It is easy to see that rendering time dominates
the process. It should be noted that this implementation
does not take advantage of the CM-5 vector units. We ex-
pect much faster computation rates for both the renderer
and compositor when the vectorized code is complete. The
communication time varied from about 10 percent to about
3 percent of the total compositing time. As the image size
increases, both the compositing time and the communica-
tion time also increase. For a fixed image size, increasing
the partition size lowers the communication time because
each node contains a proportionally smaller piece of the im-
age and because the total communications bandwidth of the
machine scales with the partition size.

The data distribution time includes the time it takes to
read the data over NFS at Ethernet speeds on a loaded Eth-
ernet. The image gathering time is the time it takes for
the nodes to send their composited 1mage tiles to the host.
While other partitions were also running, the data distri-
bution time could vary dramatically due to the disk and
Ethernet contention. Taking the wvorticity data set as an
example, the data distribution varied from 40 to 90 seconds
regardless of the partition size. Both of the data distribution
time and image gathering time will be mitigated by use of
the parallel storage and the use of the HIPPI frame buffer.

5.2 Networked Workstations

For our workstation tests, we used a set of 32 high per-
formance workstations. The first four machines were IBM
RS/6000-550 workstations equipped with 512 MB of mem-
ory. These workstations are rated at 81.8 SPEC{p92. The
next 12 machines were HP9000/730 workstations, some with
32 MB and others with 64 MB. These machines are rated at
86.7 SPEC{p92. The remaining 16 machines were Sun Sparc-
10/30 workstations equipped with 32 MB, which are rated at
45 SPEC{p92. The tests on one, two and four workstations
used only the IBM’s because of their memory capacity. The
tests with eight and 16 used a combination of the HP’s and
IBM’s. The 16 Sun’s were used for the 32 machine tests.
It was not possible to assure absolute quiescence on each
machine because they are in a shared environment with a
large shared Ethernet and files systems. During the period
of testing there was network traffic from network file system
activity and across-the-net tape backups. In addition, the
workstations lie on different subnets, increasing communi-
cations times when the subnet boundary must be crossed.
Thus the communication performance was highly variable
and difficult to characterize.

Timing results are shown in Figure 10 using all three data
sets and an image size of 512x512. Again, data distribution
and image gather times are not included in the graphs. In
a heterogeneous environment, it is less meaningful to use
speedup graphs to study the performance of our algorithm
and implementation so speedup graphs are not provided.

For large images (e.g. 512x512) in the workstation envi-
ronment, it is worthwhile to compress the subimages used in
the compositing process. We have incorporated a compres-
sion algorithm into our communications library using an al-
gorithm described in [13]. The compression ratio was about
four to one, resuling in about 80% faster communication
rates for the 32 workstation case. With fewer processors,
computation tends to dominate over communications and
compression is not as much of an advantage. The timing
results show in Figure 10 include the effects of data com-
pression.
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Figure 10: PVM Run Times by Data Set, 512 x 512 image
size

function 1 2 4 8 16 32
rend 350.24 | 180.15 | 79.54 | 45.01 | 20.59 | 12.50
comp 0.03 0.17 0.09 0.10 0.12 0.12
comm 0.00 0.57 0.39 2.04 3.11 1.37

Table 2: PVM Time Breakdown (in seconds), Vorticity Data
Set, 512 x 512 image size

Table 2 shows a time breakdown by algorithm component:
rendering (rend), compositing computation time (comp),
and compositing communications (comm). From the test
results, we see that the rendering time still dominates when
using eight or fewer workstations. It is also less beneficial
to render smaller images due to the overhead costs associ-
ated with the rendering and compositing steps. Unlike the
CM-5 results, tests on workstations show that the communi-
cation component is the dominant factor in the compositing
costs. On the average, communication takes about 97% of
the overall compositing time. On the CM-5, a large parti-
tion improved the overall communications time partly be-
cause the network bandwidth scales with the partition size.
This 1s not true for a local area network such as an ether-
net which has a fixed bandwidth available regardless of the
number of machines used. On a LAN, communication costs
of the algorithm rise with increasing numbers of machines.

The data distribution and image gather times varied
greatly, due to the variable load on the shared Ethernet.
The data distribution times varied from 17 seconds to 150
seconds while the image gather times varied from an aver-
age of .06 seconds for a 64 x64 image to a high of 8 seconds
for a 512x512 image. The above test results were based on
Version 3.1 of PVM. Our initial tests using PVM 2.4.2 show
a much higher communication cost, more than 70% higher.

In a shared computing environment, the communication
costs are highly variable due to the use of the local Ethernet
shared with hundreds of other machines. There are many
factors that we have no control over that are influential to
our algorithm. For example, an overloaded network and
other users’ processes competing with our rendering process
for CPU and memory usage could greatly degrade the per-
formance of our algorithm. Improved performance could be

achieved by carefully distributing the load to each computer
according to data content, and the computer’s performance
as well as its average usage by other users. Moreover, com-
munications costs are expected to drop with higher speed
interconnection networks (e.g. FDDI) and on clusters iso-
lated from the larger local area network.

6 Conclusions

We have presented a parallel volume ray-tracing algorithm
for a massively parallel computer or a set of interconnected
workstations. The algorithm divides both the computation
and memory load across all processors and can therefore
be used to render data sets that are too large to fit into
memory on a single uniprocessor. A parallel (binary-swap)
compositing method was developed to combine the indepen-
dently rendered results from each processor. The binary-
swap compositing method has merits which make it particu-
larly suitable for massively parallel processing. First, while
the parallel compositing proceeds, the decreasing image size
for sending and compositing makes the overall compositing
process very efficient. Next, this method always keeps all
processors busy doing useful work. Finally, it is simple to
implement with the use of the k-D tree structure described
earlier.

The algorithm has been implemented on both the CM-5
and a network of scientific workstations. The CM-5 imple-
mentation showed good speedup characteristics out to the
largest available partition size of 512 nodes. Only a small
fraction of the total rendering time was spent in communi-
cations, indicating the success of the parallel compositing
method. Several directions appear ripe for further work.
The host data distribution, image gather, and display times
are bottlenecks on the current CM-5 implementation. These
bottlenecks can be alleviated by exploiting the parallel 1/O
capabilities of the CM-5. Rendering and compositing times
on the CM-5 can also be reduced significantly by taking ad-
vantage of the vector units available at each processing node.
We are hopeful that real time rendering rates will be achiev-
able at medium to high resolution with these improvements.
Performance of the distributed workstation implementation
could be further improved by better load balancing. In a
heterogeneous environment with shared workstations, linear
speedup is difficult. Data distribution heuristics which ac-
count for varying workstation computation power and work-
load are being investigated.
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